Laboratoire de I'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

N

Comparative study of three
connectionist models
on a classification problem

R.Baron, M.B.Gordon,
H.Paugam-Moisy, J-M.Torres April 12, 1996
Moreno

Research Report N© 96-07

Ecole Normale Supérieure de Lyon
IIIl 46 Allée d'ltalie, 69364 Lyon Cedex 07, France

Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.¢
Adresse électronique : lip@lip.ens—lyon.fr

Comparative study of three connectionist models
on a classification problem

R.Baron, M.B.Gordon, H.Paugam-Moisy, J-M.Torres Moreno

April 12, 1996

Abstract

In this paper, we compare three neural learning models, on the sonar target classification
problem of Gorman and Sejnowski, in two ways. First, we compare the performance on
training and testing sets, in the usual sense. Second, we investigate in the database, in
order to compare the examples which are hard to be learned and the patterns which are
ill-classified, in generalization. The neural networks involved in these comparisons are
a classical multilayered network, a wavelet network, and a evolutive architecture named
“Monoplane”. In spite of several differences in the characteristics of their learning
algorithms, these neural networks perform similarly on the classification problem, and
the patterns which are hard to classify are nearly the same, whatever the model be.
Several distance measures are then computed on the database, but we show that none
of them allows to explain the misclassification phenomenon. We conclude that hard to
classify patterns depend on the database more on than the learning model.

Keywords: classification, learning, neural networks, Monoplane, wavelet networks

Résumé

Dans cet article, trois modeles connexionistes sont comparés, sur le probleme de classi-
fication des signaux sonar de Gorman et Sejnowski. Tout d’abord, les performances en
apprentissage et en généralisation sont comparées. Puis, la base d’exemple est analysée,
afin de caractériser les exemples mal appris et mal reconnus. Les trois modeles mis
en ceuvre sont, un réseau multi-couches classique, un réseau d’ondelettes, et une ar-
chitecture incrémentale, appelée “Monoplan”. Malgré les différences des algorithmes
d’apprentissage utilisés, ces trois modeles se comportent de maniere similaire pour la
tache de classification, et les exemples mal classés sont a peu pres les mémes, quel que
soit le modele. Des mesures de distances sont alors utilisées, mais aucune d’elles ne
permet d’expliquer completement les cas de mauvaise classification. Nous concluons
que les exemples difficiles a classer dépendent de la base d’exemple, plus que du modele
mis en ceuvre.

Mots-clés: classification, apprentissage, réseaux de neurones, Monoplan, réseau d’ondelettes

Comparative study of three connectionist models
on a classification problem

R.Baroni, M.B.GordonJ[, H.Paugam—Moisyi, J-M.Torres Moreno!
f CEA/Département de Recherche Fondamentale sur la Matiére Condensée
17 rue des Martyrs, 38054 Grenoble Cedex 9, France
gordon@drfmc.ceng.cea.fr
I LIP - URA 1398 du CNRS - Ecole normale supérieure de Lyon
46 allée d’Italie, 69364 Lyon Cedex 07, France

rbaron@lip.ens-lyon.fr

April 12, 1996

1 Introduction

In real-world applications, for industrial, financial, or medical applications with large amounts
of data, several questions arise to developers, such as the choice of the right method and the
best model. From a theoretical point of view, multilayer neural networks and back-propagation
learning, for instance, have been related to data analysis [2, 14], and to Bayesian probabilities [11].
However such results are not very helpful for practical applications. In literature, many authors
compare their approach to other models, in terms of success on some benchmark or school-problem.
Generally the differences are very tiny (in favor of the new model, obviously). Even between several
connectionist models, applied to a same problem, the difference of performance is not always very
significant. As a matter of fact, there does not exist a best network for a given application. The
percentages of success cannot be strictly defined for a neural model, neither in learning phase nor
in generalization. Only a set of good networks can be defined, with suitable architectures and
ranges of good parameters [8]. Therefore, performance should better be given with an error bar,
as physicists do.

Comparisons of models on benchmarks have been recently performed by various scientific com-
munities [12, 3]. One of their interest is to emphasize the salient features of various methods, such
as learning fastness, robustness, explanatory power, etc. However, limitations of performance are
not always intrinsic to the models. They may rather be intrinsic to the databases. In this article,
we compare three neural models on a sonar target classification problem, in two ways. First we
compare the performance on training and testing sets, in the usual sense. The neural networks in-
volved in these comparisons are a classical multilayer network, a wavelet network, and an evolutive
architecture named “Monoplane”. Second we investigate in the databases, in order to compare the
examples which are hard to be learned and the patterns which are classified in the wrong class.
Several distance measures are computed on the database, but we show that none of them allows to
explain the misclassification phenomenon.

2 Wavelet neural network

2.1 Principle and architecture

Recently, the theory of wavelet decomposition has been related to the neural network area [1].
The wavelet theory allows to decompose a function f, using a family of functions obtained by
dilating and translating a single wavelet function. In the discrete case, it can be shown that f is
approximated as follows:

f(#) %Zwi'h(di(ﬂﬂ—ti)) (1)

where d; and t; stand respectively for dilation and translation factors, and h is a wavelet function,
i.e. the Fourier transform of which verifies some conditions.

In this study, a neural network is applied from IR"™ to IR. A multi-dimensional wavelet ¥ :
IR™ — IR is built by setting U(z) = (27 - & — n).exp(—1.27 - 2) where n is the dimension of the
input space, as in [15]. A continuous wavelet decomposition formula in the multidimensional case
can be derived from the scalar case. A discrete approximation for a function f: IR" — IR is

N
s(z) = Z w® -\II(D(i)(x — t(i))) + 6 (2)
i=1
This expression may be written as the output of a wavelet neural network with one hidden layer,

as shown in figure 1. The network output is computed from formula (2) where

e D is a dilation matrix, which is a diagonal matrix (built with a dilation vector {d;i)}lstH
on its diagonal, and 0 elsewhere);

o t() is a translation vector;

e 0 is a parameter introduced to help dealing with non-zero mean functions (the average value
of ¥ is 0, thus the average value of s is 8).

1
D}y

Figure 1: Architecture of a wavelet network.

Since t('i) and @ appear as biases, they can be considered as weights of the model, as well as
w® and d;l). The output cell computes a weighted sum of hidden cells activities, and may apply a
sigmoidal transfer function if the network is to be used for a classification task.

2.2 Learning algorithm

Each element of a database & is an input/output pair (zy, f(2)), where f is the function to be
approximated or the class to be assigned. For every weight, the learning rule is a gradient descent
algorithm, like in back-propagation learning. The cost function to be minimized at each step is
c(xx) = £(s(2x) — f(2x))?. The database S is split into a training set S, and a generalization set
S,. After each presentation of a pair (x4, f(2y)) from S, each weight X of the network (X stands
for w, d;i),t(i) or #) is modified according to Xy = Xy — v.gradxc(zg). The performance of a
wavelet neural network for approximating a function is given by the total cost (in generalization
phase), which is the mean of ¢(xy) for 24 in S;. If the wavelet network is applied to a classification
task, the performance is the amount of success in correctly assigning its class to each pattern of &,
(in learning phase) or 8, (in generalization).

3 Monoplane, an evolutive neural network

The Monoplane algorithm has been described in detail in [13]. It generates a neural network with
one hidden layer of binary units, and a binary output unit.

3.1 Learning algorithm

First, a binary perceptron is trained from the learning set. If the training performance P, = 100%,
the learning set is linearly separable and the algorithm stops. If P, < 100%, we add a hidden
unit A, and train it to give an output ¢, = 1 for all those patterns that were correctly classified
and o, = —1 for patterns misclassified by the previous unit. Thus, each new hidden unit helps to
correct part of the errors produced by the previous ones. Once the training of a hidden unit is over,
its weights are freezed, and not modified any more. The hidden layer grows until one unit learns all
its o, correctly. It has been shown by Martinez and Esteve [6] that this procedure converges, and
that the output is the parity of the internal representations associated to the training set. This first
stage of Monoplane is identical to the first layer construction of their Offset algorithm. It differs in
that the latter needs a second hidden layer.

Second, the output unit is connected to the units of the hidden layer. This unit is trained to
learn the desired outputs, on the training set. If the output unit does not find a solution without
errors, we go on adding hidden units to correct the output errors, i.e. we trained to learn o, = 1
for all those patterns that were correctly classified and o, = —1 for patterns misclassified by the
output unit. This happens if the internal representations are not linearly separable. Hence, new
hidden units are included one after the other, until one unit learns its training set without errors.
Then we try again to learn the desired outputs.

3.2 Main features of the model

Monoplane reduces the learning problem to that of training single perceptrons, as many as hidden
units are needed, plus the output. Its overall performance is strongly dependent on the perceptron
learning algorithm. We use Minimerror, which is based on the minimization of a cost function that
may be interpreted as a noisy measure of the training error. It has been theoretically shown, and
experimentally confirmed, that this algorithm has optimal performances both in training and in
generalization [4, 10].

4 Application and comparison of models

Three connectionist learning models have been tested on a sonar target classification: Monoplane,
back-propagation, wavelet learning. The database § gathers a file “sonar.mines” which contains 111
patterns obtained by bouncing sonar signals off a metal cylinder at various angles (and under various
conditions), and a file “sonar.rocks” of 97 patterns obtained from rocks under similar conditions.
This base has been used in an earlier work by Gorman and Sejnowski [5], and then broadcasted on
Internet. § can be decomposed for two series of experiments. First an “aspect-angle independent”
series (further denoted by AAI), in which the whole data set is used without controlling for aspect
angle, and an “aspect-angle dependent” series (further denoted by AAD) in which the training and
testing sets are carefully controlled to ensure that each set contains cases from each aspect angle
in appropriate proportions. In our experiments, each pattern is a set of 60 real inputs, and one
binary desired output (-1 for a mine and +1 for a rock).

4.1 Results on AAI experiments

For AAI series, 13 packets of 16 randomly chosen patterns have been drawn. Hence, 13 series
of experiments can be performed, each with a different packet of 16 patterns in S,, and the 192
remaining patterns as examples, in &;. Means and error bars presented on figure 2 are obtained by
averaging the performance of the 13 series of training and generalization sets. Results are presented
for various numbers of hidden units. Monoplane algorithm stops for different numbers of hidden
units, depending on the series of example sets.

0
P, (%) Py (%)

100 — - 95 T T T T E

;] 90 F]

85 | :

95 : 80 | . 3

] T]

75 F E

ook ; 70 F E

~m-BP] e r -m-BP]

AAl | —O—Monoplane] 60k AAl | —Monoplane]

—&-Wavelets —&--Wavelets

85 1 1 1 1 1 1 1 55 1 1 1 1 1 1 1]

1 2 3 4 5 &8 7 1 2 3 4 5 6 7
Hidden units Hidden units

Figure 2: Experimental results, on average, for the AAI series

Learning performance is maximum for Monoplane (inherent in the model), and slightly better
for wavelet networks than for multilayer networks. Nevertheless the curves of generalization are
very similar and confuse, with a slightly better performance for multilayer networks.

4.2 Results on AAD experiments.

For AAD series, both the learning set S; and the testing set S, are composed of 104 patterns which
are supposed to be uniformly distributed.

Multilayer networks are trained during 500 epochs!, the learning set S; being mixed before each
epoch. Generally, the networks became stable between 200 and 300 epochs, except for too small
numbers of hidden units. Wavelet neural networks are trained towards 30 000 iterations, with
random choice of an example in S, at each iteration. Since §; contains 104 examples, the number
of iterations is nearly the same for the convergence of both models. Monoplane learns towards a
perfect success, according to the definition of the model. The only exception, on this diagram, is
the case of a network without hidden layer.

P, (%) Py (%)

100 00

T a T

o ¥ -) %ﬁi‘i%ﬁ-

; ; 8O |]
85 F H 3
80 F ,,r"'] 75 [/]
75 - ."I' r 70 L]
26 : . |

; ~-0-BP g5 [~O--BP]
65k AAD | —&—Monoplane] AAD | —a&—Monoplane

C —&--Wavelets —&--Wavelets
60 b 1 L ! L | 1 [210] 1 1 I I I 1 1

1 2 3 4 5 33 7 1 2 3 4 5 [7
Hidden units Hidden units

Figure 3: Experimental results, for the AAD series.

For each model, except for Monoplane which is deterministic, several initial sets of weights,
or several learning rate values have been tested, for different numbers of hidden units. The two
graphics of figure 3 show average success in learning and generalization phases respectively, for the
three models. Error bars represent the dispersion.

Once again, performance is roughly independent of the model. The curves obtained for back-
propagation and for wavelet learning are confused. Monoplane performs better in the learning
phase, with a very low number of hidden units, but its performance in generalization is not so high
than the best values of the two other models. A better tuning of Monoplane parameters allows to
find a network, without hidden units, which performs 100% on the learning set, but slightly worst
on S, than the graphic shows. This result means that the 104 patterns of S, are linearly separable.
The most important result is that the set of 208 patterns is also linearly separable. This property
(certainly unknown from Gorman and Sejnowski) has been discovered in running the Monoplane
learning algorithm. A learning experiment has been performed on the whole data base S; US, and
a network with no hidden units which performs 100% has been found. The hyperplane H, defined
by this network will be used as a reference in a further section.

Yan epoch is a complete presentation of the whole training set S;.

4.3 Comparison of the models

In spite of their common behavior on experiments, the three learning models differ in several
characteristics. Whereas multilayer networks and Monoplane learning algorithms are based on
separating the space by hyperplanes and then applying non-linearities, wavelet networks operate
local clustering (like RBF networks do) and then apply non-linearities. On the other hand, whereas
multilayer and wavelet networks learn from a global cost-minimization of the whole network (every
weight at each iteration), Monoplane learns units one by one and minimizes the cost function for
one unit after the other, in a constructive way. These differences allow to guess that the three
models would not capture the same features from the database. Thus our next experiment has
been to compare the examples which are difficult to be learned and the hard to classify patterns,
in generalization. Next sections present the results of these comparisons in the case of the AAD
experiments.

5 Patterns which are difficult to well classify

5.1 Ill-learned examples

Since the learning success is always close to 100% (cf. figure 3), there are only few ill-learned
examples, except for multilayer or wavelet networks without enough hidden units. For Monoplane,
in the case of no hidden units, presented on figure 3, three examples are not well learned: number 53,
number 57, and number 66. For the two other models, ill-learned examples have been associated to
the percentage of their occurrences in all the experiments performed with different initial weights, or
different numbers of units, or different learning rate values. The most frequent ill-learned example
is number 1, for both multilayer (88%) and wavelet (54%) networks. Number 57 is their second
more frequent ill-learned example: 25% for multilayer and 37.5% for wavelet networks; number 66
is also ill-learned: 21% for multilayer and 17% for wavelet networks.

In conclusion, among the short lists of ill-learned examples for the three models, two numbers
appear frequently, whatever the model be. In the peculiar case of Monoplane, this question is no
longer significant, since all the examples have been proved to be learnable, even without hidden
units, when the tuning of the learning parameters is sufficiently sharp.

5.2 Ill-classified patterns, in generalization

Monoplane gives a unique list of ill-classified patterns, for each number of hidden layers, before
reaching perfect learning. In generalization, the list for one hidden layer (2 hidden units) is the
same as for no hidden layer, plus one pattern. For multilayer and wavelet networks, percentages have
been calculated for the occurrence of ill-classified patterns, as explained for ill-learned examples.
Once again, we established that the most frequently ill-classified patterns are nearly the same,
whatever the learning model be. Table 1 presents the patterns which are the most difficult to be
well classified, with an indication of their presence (for Monoplane) or their frequence (for multilayer
and wavelet networks).

In this table, 12 patterns are present among the 17 patterns of the lists of ill-classified patterns
for Monoplane. The table also contains all the patterns the frequence of which is greater than 60%,
both for multilayer and for wavelet networks. The results show a strong correlation in ill-classified
patterns, and a strong consensus, nearly independent of the learning model. We must conclude
that: hard to classify patterns depend on the database more than on the learning model.

Pattern number || Monoplane | Multilayer network | Wavelet network
1 yes 100 % 5 %
2 no 63 % 79 %
5 yes 71 % 79 %
16 yes 17 % 25 %
29 yes 71 % 79 %
30 no 33 % 71 %
32 yes 67 % 46 %
35 yes 75 % 17 %
37 no 92 % 63 %
38 no 100 % 71 %
66 yes 63 % 46 %
68 yes 67 % 25 %
81 yes 42 % 75 %
82 no 71 % 79 %
93 yes 33 % 4 %
97 yes 67 % 13 %
98 yes 25 % 33 %

Table 1: Most frequently ill-classified patterns, in generalization, for AAD series.

5.3 Distances between examples

Next issue is to investigate in the database itself in terms of distances, in order to find an explanation
to misclassification. For each pattern, the minimum and the maximum distances to all the other
patterns in S, have been computed. Afterwards, patterns have been sorted, first by increasing
minimum distance, second by increasing maximum distance. Patterns the number of which is in
table 1 have been located in both lists. For the minimum distance, more than half the set of
ill-classified patterns is concentrated in the last third part of the list. All these patterns, except
pattern number 2, are also in the first half part of the maximum distance list. That means they
probably are far from the other patterns of their class, and close by patterns of the opposite class.
It is a good reason for being ill-classified. Nevertheless, patterns number 16, number 35, number
97, and number 98 have a low minimum distance and a high maximum distance, which seems to
be paradoxical. It is interesting to notice that those critical patterns are more weakly ill-classified
by wavelet networks than others, probably due to the local clustering learning.

6 Removing conflicting data

One problem with real-world data bases lies in conflicting data. Input/output pairs are said to be
conflicting pairs when similar inputs are mapped into dissimilar outputs. Following [7], a measure
is proposed. The purpose is to measure the degree of conflict between two input/output pairs.
Assuming these pairs are denoted by (7, y) and appropriate distance metrics dz and dy are given
respectively in input and output vector spaces, the function

is computed. Euclidean distance metric will here be used for dz and d3. Then, s can be interpreted
as a conflict measure between pairs ¢ and j: the higher the value of s, the higher the degree of
conflict between pairs (Z;, 7;) and (£, ¥;). In order to make the learning phase easier, this measure
can be used in a conflicting data removing procedure: given a threshold ©, when s(¢, j) > ©, both
examples ¢ and j are removed from the learning base. This may prevent a neural network from
learning conflicting data, which violates the definition of a function (one input mapped to one and
only one output).

6.1 Conflict measure and misclassified patterns

The conflict measure has first been used on the AAD generalization base S;. s(¢,7) have been
computed for all the input/output pairs of this base. It was assumed that ill classified cases could
be resulting from conflicting input/output pairs. Then, the removing procedure has been applied on
the generalization set, in order to detect conflicting data: cases ¢ and j for which s(i, j) > threshold
have been removed.

T T
Generalisation ——

80 B

60 1

Performance

40 | 4

20 —

L L L
1 1.05 1.1 1.15 1.2 1.25
Treshold

Figure 4: Partial generalization performance

Figure 4 plots the generalization performance on patterns which are not removed from the
generalization set S, as the threshold varies. This rate is roughly uniform, whatever the threshold
be. The first rate, at a threshold 0.8, is higher, because of the small number of remaining patterns
(only 7 cases). If assuming that removed examples are the hard to classify patterns, then, as the
threshold increases, only very conflicting patterns are removed, and remaining examples should be
easier to classify. Hence, generalization performance should be increasing with the threshold. This
is not the case. We must conclude that for the sonar target classification, in generalization, the
conflict measure s is not relevant for the ill-classification problem. Removed examples according to
this measure, are not actually ill-classified patterns.

6.2 Conflict measure and learning

In order to find a better explanation, new experiments have been performed. The conflict measure
s was first proposed to ease the learning phase. The measure is used to remove conflicting pairs
from the learning set. Influence of both the threshold and the number of cases in this base has
been studied. Therefore, all the example bases have to be redefined. S, U S, is used to build three
nested training sets containing 52, 104 and 156 examples, and a common generalization set with

52 patterns. The following procedure is then applied to each of the training sets: given a threshold
value O, input/output pairs ¢ and j for which s(7, j) > © are removed from the learning base. The
learning algorithm is applied with the remaining examples. We call “original training set” the set
before the removing procedure is applied, and “learning base”, the group of remaining examples
after the deletion (that is, examples which are effectively learned). Results are displayed below.
On each figure, three curves are given, according to the size of the original training set (52, 104
and 156 cases).

Base 52 —— -
Base 104 --—---
Base 156 ------

% Base

10 | 4

) ! ! ! ! ! ! ! !

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
Treshold

Figure 5: Percentage of remaining examples

Figure 5 plots the amount of the original training set used in the learning procedure (i.e. the
ratio #(learning base)/#(original training set)). The three curves have the same shape. But the
threshold for which 100% of the set is kept for training, slightly increases with the size of the original
training set. Thus, the degree of conflict in the training set remains nearly the same, whatever the
size of the original training set. However, the number of conflicting pairs logically increases with
the size of the original set. The three training bases can be considered as equally representative of
the whole database including 208 examples.

100

95 -

90

Base 156 ------

85

80

Rate

75
70
65 [/ /7

60 |

55 ! ! ! ! ! ! ! !
1.1 1.15 1.2 1.25

1 1.05
Treshold
Figure 6: Classification on the original training set

Figure 6 shows the rate of well classified examples on each original training set. Depending on

the threshold value, some examples are included in the learning base, some are excluded since they
are conflicting. As in the first figure, the three curves have the same shape, and are nearly identical.
This is a consequence of the previous observation. The rate of remaining examples depends on the
threshold value, more than on the original set size. And the rate of well learned examples is also
mainly dependent on the threshold value. Thus, the rate of success on the original training set is
nearly the same, whatever the original set size be.

90
85 [T E—
80 I e e /’/,/“ 1‘\\:“_
75
70

65 -

Generalisation Rate

60 -

ssf /. Base52 —
s Base 104 -----
Base 156 ------

50 ‘/,,. i

45 L L L L L L L L
1 1.05 1.1 1.15 1.2 1.25
Treshold

Figure 7: Generalization rate

The main difference between the three bases is given in figure 7, which plots the generalization
rate. As it could be expected, the rate globally increases with the threshold, since a larger number
of examples has been learned. But this rate also increases with the size of the original learning base.
Learning patterns are not so numerous in order that the learning base is redundant. Therefore, the
greater the learning base, the better the generalization performance, in the limit of the available
database for this application.

In conclusion, the conflict measure s has not been proved to be a very relevant criterion. It is
not sufficient for characterizing ill-learned nor ill-classified patterns.

7 Measures and decision border

Another distance criterion could be the stability defined with regards to the Monoplane model [13].
The stability ~ of a pattern ¢ measures the distance of pattern ¢ to the separating hyperplane, with
positive sign if it is well classified, negative otherwise. A small value of the stability implies that
an example is close by the separating hyperplane (see fig. 8). We may assume that, the smaller the
stability of example ¢, the harder the correct classification of 7.

Let us compare the conflict measure and the stability. The conflict measure s(z, j) is higher as
two patterns ¢ and j are more similar, although belonging to different classes.

The stability of all the examples has been computed, from the hyperplane separating the whole
base, as discussed in section 4.2.Notice that, for this application, the stability is positive for every
pattern, since Hj realizes a linear separation of the whole database. For the wavelet network, half
of the hard to be learned pattern have a high stability value, hence they should have been easy to
learn. However, the most difficult examples, number 57 and 66 have actually a very small stability.
This may explain why these patterns are hard to be learned for both wavelet and multi-layered
networks.

10

o Class 1
O Class 2
O ==0
\D
Conflict measure Stability measure

Figure 8: Comparison between the two distance criteria

Let consider now the generalization set and the table of ill-classified patterns for the three
models (table 1, section 5.2). A proportion of 82% of these ill-classified patterns have a stability
v < 0.1. It has to be compared to the whole generalization set, for which the proportion of
patterns with a stability v < 0.1 is only 38%. The stability criterion of Monoplane is better
than the conflict measure for explaining the patterns which are ill-classified, both by wavelet and
multilayered networks.

The stability could be even more relevant in explaining multi-layered network misclassification,
because the decision borders of this model are also hyperplanes. [Experiments are in progress in
this direction.]

8 Conclusion

Three neural learning models have been compared on the sonar target classification problem of
Gorman and Sejnowski [5]. In spite of several differences in the characteristics of their learning
algorithms, these neural networks perform similarly on the classification problem. Experiments
even prove that the examples which are hard to be learned and the patterns which are difficult to
be well classified in generalization are nearly the same, whatever the model be. We have already
encountered this phenomenon, in case of an industrial application of pollution prediction, and with
different neural models (Kohonen topological maps and multilayer networks) [9]. We claim that
hard to classify patterns depend on the database more than on the learning model.

Three measures of distance have been used to help dealing with learning failure: a classical
euclidean distance, a conflict measure, and a stability measure. Neither the euclidean distance
nor the conflict measure have been proved to be relevant to characterize patterns which are hard
to learn, or hard to classify in generalization. The stability measure is more relevant than the
previous criteria. This statement confirms the similar behavior which has been observed for the
three models. A calculus of stability from hyperplanes computed by Monoplane in learning on the
whole database, could be used as a reference for predicting hard to classify patterns. Nevertheless,
the sonar application has proved to be a linearly separable classification problem, which is not the
general case for real-world applications. A general criterion which would allow to distinguish hard
to classify patterns is still a open problem.

Consequences of this work are both theoretical and practical. The theoretical aspect concerns
the need of researching a definition of complexity for an application or for a database, a theory like
the VC-dimension for the families of functions or networks, but with more realistic considerations.
The practical consequences consist in pointing out the importance of the data collection phase for

11

the successful development of any application (industrial, medical, financial ...). Databases must
be as large as possible, without inherent contradictions and without non-representative outliers. For
classification problems, the different classes have to be equally represented in the database. Thus,
if the database is carefully collected, the developer can guess that the performance is strongly
dependent of the complexity of his application (which cannot be avoid) but nor of the database
neither of the learning model.

References

(1]

A. Benveniste and Q. Zhang. Wavelet networks. IEEE Trans. on Neural Networks, 3(6):889-898,
November 1992.

P. Gallinari, S. Thiria, and F. Fogelman-Soulié. Multilayer perceptrons and data analysis. In IJCNN-5San
Diego, volume I, pages 391-399, 1988.

O. Gascuel and P. Gallinari. Méthodes symboliques-numériques de discrimination. Rapport final
d’activité, Projet Inter-PRCs, 1994.

M.B. Gordon and D. Grempel. Leraning with a temperature dependent algorithm. Furophysics Letter,
29:257-262, 1995.

R.P. Gorman and T.J. Sejnowski. Analysis of hidden units in a layered network trained to classify sonar
targets. Neural Networks, 1:75-89, 1988.

D. Martinez and D. Esteve. The offset algorithm: Building and learning method for multilayer neural
networks. Furophysics Letter, 18:95-100, 1992.

L.R. Medsker. Hybrid Neural Network and Ezxpert Systems. Kluwer Academic Publishers, 1994.

H. Paugam-Moisy. Parallel neural computing based on network duplicating. In I. Pitas, editor, Parallel
Algorithms for Digital Image Processing, Computer Vision and Neural Networks, chapter 10, pages
305-340. John Wiley, 1993.

H. Paugam-Moisy. Quelques principes méthodologiques pour le bon usage des méthodes connexionnistes.
In Les applications industrielles de la reconnaissance des formes, Séminaire du programme européen

COMETT II, pages 23-36, INSA de Lyon, 1994.

B. Raffin and M.B. Gordon. Learning and generalization with minimerror, a temperature-dependent
learning algorithm. Neural Computation, 7(6):1206-1224, November 1995.

M.D. Richard and R.P. Lippmann. Neural network classifiers estimate bayesian a posteriori probabilities.
Neural Computation, 3(4):461-483, 1991.

S.B. et al. Thrun. The monk’s problems, a performance comparison of different learning algorithms.
Technical Report CMU-CS-91-197, Carnegie Mellon University, December 1991.

J.-M. Torres-Moreno, P. Peretto, and M.B. Gordon. An evolutive architecture coupled with optimal
perceptron learning for classification. In M. Verleysen, editor, Proceedings of ESANN’95, pages 365-370,
Brussels, 1995. D facto.

A.R. Webb and D. Lowe. The optimised internal representation of multilayer classifier networks performs
nonlinear discriminant analysis. Neural Networks, 3(4):367-376, 1990.

Q. Zhang. Regressor selection and wavelet network construction. Publication Interne 709, IRISA,
Campus de Beaulieu-35042 Rennes Cedex - France, April 1993.

12

