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Comparative study of three connectionist modelson a classi�cation problemR.Baron, M.B.Gordon, H.Paugam-Moisy, J-M.Torres MorenoApril 12, 1996AbstractIn this paper, we compare three neural learning models, on the sonar target classi�cationproblem of Gorman and Sejnowski, in two ways. First, we compare the performance ontraining and testing sets, in the usual sense. Second, we investigate in the database, inorder to compare the examples which are hard to be learned and the patterns which areill-classi�ed, in generalization. The neural networks involved in these comparisons area classical multilayered network, a wavelet network, and a evolutive architecture named\Monoplane". In spite of several di�erences in the characteristics of their learningalgorithms, these neural networks perform similarly on the classi�cation problem, andthe patterns which are hard to classify are nearly the same, whatever the model be.Several distance measures are then computed on the database, but we show that noneof them allows to explain the misclassi�cation phenomenon. We conclude that hard toclassify patterns depend on the database more on than the learning model.Keywords: classi�cation, learning, neural networks, Monoplane, wavelet networksR�esum�eDans cet article, trois mod�eles connexionistes sont compar�es, sur le probl�eme de classi-�cation des signaux sonar de Gorman et Sejnowski. Tout d'abord, les performances enapprentissage et en g�en�eralisation sont compar�ees. Puis, la base d'exemple est analys�ee,a�n de caract�eriser les exemples mal appris et mal reconnus. Les trois mod�eles misen �uvre sont, un r�eseau multi-couches classique, un r�eseau d'ondelettes, et une ar-chitecture incr�ementale, appel�ee \Monoplan". Malgr�e les di��erences des algorithmesd'apprentissage utilis�es, ces trois mod�eles se comportent de mani�ere similaire pour latâche de classi�cation, et les exemples mal class�es sont a peu pr�es les mêmes, quel quesoit le mod�ele. Des mesures de distances sont alors utilis�ees, mais aucune d'elles nepermet d'expliquer compl�etement les cas de mauvaise classi�cation. Nous concluonsque les exemples di�ciles �a classer d�ependent de la base d'exemple, plus que du mod�elemis en �uvre.Mots-cl�es: classi�cation, apprentissage, r�eseaux de neurones, Monoplan, r�eseau d'ondelettes



Comparative study of three connectionist modelson a classi�cation problemR.Baronz, M.B.Gordony, H.Paugam-Moisyz, J-M.Torres Morenoyy CEA/D�epartement de Recherche Fondamentale sur la Mati�ere Condens�ee17 rue des Martyrs, 38054 Grenoble Cedex 9, Francegordon@drfmc.ceng.cea.frz LIP - URA 1398 du CNRS - Ecole normale sup�erieure de Lyon46 all�ee d'Italie, 69364 Lyon Cedex 07, Francerbaron@lip.ens-lyon.frApril 12, 19961 IntroductionIn real-world applications, for industrial, �nancial, or medical applications with large amountsof data, several questions arise to developers, such as the choice of the right method and thebest model. From a theoretical point of view, multilayer neural networks and back-propagationlearning, for instance, have been related to data analysis [2, 14], and to Bayesian probabilities [11].However such results are not very helpful for practical applications. In literature, many authorscompare their approach to other models, in terms of success on some benchmark or school-problem.Generally the di�erences are very tiny (in favor of the new model, obviously). Even between severalconnectionist models, applied to a same problem, the di�erence of performance is not always verysigni�cant. As a matter of fact, there does not exist a best network for a given application. Thepercentages of success cannot be strictly de�ned for a neural model, neither in learning phase norin generalization. Only a set of good networks can be de�ned, with suitable architectures andranges of good parameters [8]. Therefore, performance should better be given with an error bar,as physicists do.Comparisons of models on benchmarks have been recently performed by various scienti�c com-munities [12, 3]. One of their interest is to emphasize the salient features of various methods, suchas learning fastness, robustness, explanatory power, etc. However, limitations of performance arenot always intrinsic to the models. They may rather be intrinsic to the databases. In this article,we compare three neural models on a sonar target classi�cation problem, in two ways. First wecompare the performance on training and testing sets, in the usual sense. The neural networks in-volved in these comparisons are a classical multilayer network, a wavelet network, and an evolutivearchitecture named \Monoplane". Second we investigate in the databases, in order to compare theexamples which are hard to be learned and the patterns which are classi�ed in the wrong class.Several distance measures are computed on the database, but we show that none of them allows toexplain the misclassi�cation phenomenon. 1



2 Wavelet neural network2.1 Principle and architectureRecently, the theory of wavelet decomposition has been related to the neural network area [1].The wavelet theory allows to decompose a function f , using a family of functions obtained bydilating and translating a single wavelet function. In the discrete case, it can be shown that f isapproximated as follows: f(x) � NXi=1 wi � h(di(x� ti)) (1)where di and ti stand respectively for dilation and translation factors, and h is a wavelet function,i.e. the Fourier transform of which veri�es some conditions.In this study, a neural network is applied from IRn to IR. A multi-dimensional wavelet 	 :IRn 7! IR is built by setting 	(x) = (xT � x � n):exp(�12 :xT � x) where n is the dimension of theinput space, as in [15]. A continuous wavelet decomposition formula in the multidimensional casecan be derived from the scalar case. A discrete approximation for a function f : IRn 7! IR iss(x) = NXi=1 w(i) �	(D(i)(x� t(i))) + � (2)This expression may be written as the output of a wavelet neural network with one hidden layer,as shown in �gure 1. The network output is computed from formula (2) where� D(i) is a dilation matrix, which is a diagonal matrix (built with a dilation vector fd(i)j g1�j�non its diagonal, and 0 elsewhere);� t(i) is a translation vector;� � is a parameter introduced to help dealing with non-zero mean functions (the average valueof 	 is 0, thus the average value of s is �).x s(x)D(2)11 �D(4)11D(3)11 t(1) w(1)D(1)11
Figure 1: Architecture of a wavelet network.Since t(i) and � appear as biases, they can be considered as weights of the model, as well asw(i) and d(i)j . The output cell computes a weighted sum of hidden cells activities, and may apply asigmoidal transfer function if the network is to be used for a classi�cation task.2



2.2 Learning algorithmEach element of a database S is an input/output pair (xk; f(xk)), where f is the function to beapproximated or the class to be assigned. For every weight, the learning rule is a gradient descentalgorithm, like in back-propagation learning. The cost function to be minimized at each step isc(xk) = 12(s(xk)� f(xk))2. The database S is split into a training set St and a generalization setSg. After each presentation of a pair (xk; f(xk)) from St, each weight X of the network (X standsfor w(i); d(i)j ; t(i) or �) is modi�ed according to Xk+1 = Xk � :gradXc(xk). The performance of awavelet neural network for approximating a function is given by the total cost (in generalizationphase), which is the mean of c(xk) for xk in Sg. If the wavelet network is applied to a classi�cationtask, the performance is the amount of success in correctly assigning its class to each pattern of St(in learning phase) or Sg (in generalization).3 Monoplane, an evolutive neural networkThe Monoplane algorithm has been described in detail in [13]. It generates a neural network withone hidden layer of binary units, and a binary output unit.3.1 Learning algorithmFirst, a binary perceptron is trained from the learning set. If the training performance Pt = 100%,the learning set is linearly separable and the algorithm stops. If Pt < 100%, we add a hiddenunit h, and train it to give an output �h = 1 for all those patterns that were correctly classi�edand �h = �1 for patterns misclassi�ed by the previous unit. Thus, each new hidden unit helps tocorrect part of the errors produced by the previous ones. Once the training of a hidden unit is over,its weights are freezed, and not modi�ed any more. The hidden layer grows until one unit learns allits �h correctly. It has been shown by Martinez and Esteve [6] that this procedure converges, andthat the output is the parity of the internal representations associated to the training set. This �rststage of Monoplane is identical to the �rst layer construction of their O�set algorithm. It di�ers inthat the latter needs a second hidden layer.Second, the output unit is connected to the units of the hidden layer. This unit is trained tolearn the desired outputs, on the training set. If the output unit does not �nd a solution withouterrors, we go on adding hidden units to correct the output errors, i.e. we trained to learn �h = 1for all those patterns that were correctly classi�ed and �h = �1 for patterns misclassi�ed by theoutput unit. This happens if the internal representations are not linearly separable. Hence, newhidden units are included one after the other, until one unit learns its training set without errors.Then we try again to learn the desired outputs.3.2 Main features of the modelMonoplane reduces the learning problem to that of training single perceptrons, as many as hiddenunits are needed, plus the output. Its overall performance is strongly dependent on the perceptronlearning algorithm. We use Minimerror, which is based on the minimization of a cost function thatmay be interpreted as a noisy measure of the training error. It has been theoretically shown, andexperimentally con�rmed, that this algorithm has optimal performances both in training and ingeneralization [4, 10]. 3



4 Application and comparison of modelsThree connectionist learning models have been tested on a sonar target classi�cation: Monoplane,back-propagation, wavelet learning. The database S gathers a �le \sonar.mines" which contains 111patterns obtained by bouncing sonar signals o� a metal cylinder at various angles (and under variousconditions), and a �le \sonar.rocks" of 97 patterns obtained from rocks under similar conditions.This base has been used in an earlier work by Gorman and Sejnowski [5], and then broadcasted onInternet. S can be decomposed for two series of experiments. First an \aspect-angle independent"series (further denoted by AAI), in which the whole data set is used without controlling for aspectangle, and an \aspect-angle dependent" series (further denoted by AAD) in which the training andtesting sets are carefully controlled to ensure that each set contains cases from each aspect anglein appropriate proportions. In our experiments, each pattern is a set of 60 real inputs, and onebinary desired output (-1 for a mine and +1 for a rock).4.1 Results on AAI experimentsFor AAI series, 13 packets of 16 randomly chosen patterns have been drawn. Hence, 13 seriesof experiments can be performed, each with a di�erent packet of 16 patterns in Sg, and the 192remaining patterns as examples, in St. Means and error bars presented on �gure 2 are obtained byaveraging the performance of the 13 series of training and generalization sets. Results are presentedfor various numbers of hidden units. Monoplane algorithm stops for di�erent numbers of hiddenunits, depending on the series of example sets.
Figure 2: Experimental results, on average, for the AAI seriesLearning performance is maximum for Monoplane (inherent in the model), and slightly betterfor wavelet networks than for multilayer networks. Nevertheless the curves of generalization arevery similar and confuse, with a slightly better performance for multilayer networks.4



4.2 Results on AAD experiments.For AAD series, both the learning set St and the testing set Sg are composed of 104 patterns whichare supposed to be uniformly distributed.Multilayer networks are trained during 500 epochs1, the learning set St being mixed before eachepoch. Generally, the networks became stable between 200 and 300 epochs, except for too smallnumbers of hidden units. Wavelet neural networks are trained towards 30 000 iterations, withrandom choice of an example in St at each iteration. Since St contains 104 examples, the numberof iterations is nearly the same for the convergence of both models. Monoplane learns towards aperfect success, according to the de�nition of the model. The only exception, on this diagram, isthe case of a network without hidden layer.
Figure 3: Experimental results, for the AAD series.For each model, except for Monoplane which is deterministic, several initial sets of weights,or several learning rate values have been tested, for di�erent numbers of hidden units. The twographics of �gure 3 show average success in learning and generalization phases respectively, for thethree models. Error bars represent the dispersion.Once again, performance is roughly independent of the model. The curves obtained for back-propagation and for wavelet learning are confused. Monoplane performs better in the learningphase, with a very low number of hidden units, but its performance in generalization is not so highthan the best values of the two other models. A better tuning of Monoplane parameters allows to�nd a network, without hidden units, which performs 100% on the learning set, but slightly worston Sg than the graphic shows. This result means that the 104 patterns of St are linearly separable.The most important result is that the set of 208 patterns is also linearly separable. This property(certainly unknown from Gorman and Sejnowski) has been discovered in running the Monoplanelearning algorithm. A learning experiment has been performed on the whole data base St [ Sg anda network with no hidden units which performs 100% has been found. The hyperplane H0 de�nedby this network will be used as a reference in a further section.1an epoch is a complete presentation of the whole training set St.5



4.3 Comparison of the modelsIn spite of their common behavior on experiments, the three learning models di�er in severalcharacteristics. Whereas multilayer networks and Monoplane learning algorithms are based onseparating the space by hyperplanes and then applying non-linearities, wavelet networks operatelocal clustering (like RBF networks do) and then apply non-linearities. On the other hand, whereasmultilayer and wavelet networks learn from a global cost-minimization of the whole network (everyweight at each iteration), Monoplane learns units one by one and minimizes the cost function forone unit after the other, in a constructive way. These di�erences allow to guess that the threemodels would not capture the same features from the database. Thus our next experiment hasbeen to compare the examples which are di�cult to be learned and the hard to classify patterns,in generalization. Next sections present the results of these comparisons in the case of the AADexperiments.5 Patterns which are di�cult to well classify5.1 Ill-learned examplesSince the learning success is always close to 100% (cf. �gure 3), there are only few ill-learnedexamples, except for multilayer or wavelet networks without enough hidden units. For Monoplane,in the case of no hidden units, presented on �gure 3, three examples are not well learned: number 53,number 57, and number 66. For the two other models, ill-learned examples have been associated tothe percentage of their occurrences in all the experiments performed with di�erent initial weights, ordi�erent numbers of units, or di�erent learning rate values. The most frequent ill-learned exampleis number 1, for both multilayer (88%) and wavelet (54%) networks. Number 57 is their secondmore frequent ill-learned example: 25% for multilayer and 37.5% for wavelet networks; number 66is also ill-learned: 21% for multilayer and 17% for wavelet networks.In conclusion, among the short lists of ill-learned examples for the three models, two numbersappear frequently, whatever the model be. In the peculiar case of Monoplane, this question is nolonger signi�cant, since all the examples have been proved to be learnable, even without hiddenunits, when the tuning of the learning parameters is su�ciently sharp.5.2 Ill-classi�ed patterns, in generalizationMonoplane gives a unique list of ill-classi�ed patterns, for each number of hidden layers, beforereaching perfect learning. In generalization, the list for one hidden layer (2 hidden units) is thesame as for no hidden layer, plus one pattern. For multilayer and wavelet networks, percentages havebeen calculated for the occurrence of ill-classi�ed patterns, as explained for ill-learned examples.Once again, we established that the most frequently ill-classi�ed patterns are nearly the same,whatever the learning model be. Table 1 presents the patterns which are the most di�cult to bewell classi�ed, with an indication of their presence (for Monoplane) or their frequence (for multilayerand wavelet networks).In this table, 12 patterns are present among the 17 patterns of the lists of ill-classi�ed patternsfor Monoplane. The table also contains all the patterns the frequence of which is greater than 60%,both for multilayer and for wavelet networks. The results show a strong correlation in ill-classi�edpatterns, and a strong consensus, nearly independent of the learning model. We must concludethat: hard to classify patterns depend on the database more than on the learning model.6



Pattern number Monoplane Multilayer network Wavelet network1 yes 100 % 75 %2 no 63 % 79 %5 yes 71 % 79 %16 yes 17 % 25 %29 yes 71 % 79 %30 no 33 % 71 %32 yes 67 % 46 %35 yes 75 % 17 %37 no 92 % 63 %38 no 100 % 71 %66 yes 63 % 46 %68 yes 67 % 25 %81 yes 42 % 75 %82 no 71 % 79 %93 yes 33 % 4 %97 yes 67 % 13 %98 yes 25 % 33 %Table 1: Most frequently ill-classi�ed patterns, in generalization, for AAD series.5.3 Distances between examplesNext issue is to investigate in the database itself in terms of distances, in order to �nd an explanationto misclassi�cation. For each pattern, the minimum and the maximum distances to all the otherpatterns in Sg have been computed. Afterwards, patterns have been sorted, �rst by increasingminimum distance, second by increasing maximum distance. Patterns the number of which is intable 1 have been located in both lists. For the minimum distance, more than half the set ofill-classi�ed patterns is concentrated in the last third part of the list. All these patterns, exceptpattern number 2, are also in the �rst half part of the maximum distance list. That means theyprobably are far from the other patterns of their class, and close by patterns of the opposite class.It is a good reason for being ill-classi�ed. Nevertheless, patterns number 16, number 35, number97, and number 98 have a low minimum distance and a high maximum distance, which seems tobe paradoxical. It is interesting to notice that those critical patterns are more weakly ill-classi�edby wavelet networks than others, probably due to the local clustering learning.6 Removing conicting dataOne problem with real-world data bases lies in conicting data. Input/output pairs are said to beconicting pairs when similar inputs are mapped into dissimilar outputs. Following [7], a measureis proposed. The purpose is to measure the degree of conict between two input/output pairs.Assuming these pairs are denoted by (~xk; ~yk) and appropriate distance metrics d~x and d~y are givenrespectively in input and output vector spaces, the functions(i; j) = d~y(~yi; ~yj)d~x(~xi; ~xj)7



is computed. Euclidean distance metric will here be used for d~x and d~y. Then, s can be interpretedas a conict measure between pairs i and j: the higher the value of s, the higher the degree ofconict between pairs (~xi; ~yi) and (~xj ; ~yj). In order to make the learning phase easier, this measurecan be used in a conicting data removing procedure: given a threshold �, when s(i; j)> �, bothexamples i and j are removed from the learning base. This may prevent a neural network fromlearning conicting data, which violates the de�nition of a function (one input mapped to one andonly one output).6.1 Conict measure and misclassi�ed patternsThe conict measure has �rst been used on the AAD generalization base Sg. s(i; j) have beencomputed for all the input/output pairs of this base. It was assumed that ill classi�ed cases couldbe resulting from conicting input/output pairs. Then, the removing procedure has been applied onthe generalization set, in order to detect conicting data: cases i and j for which s(i; j) > thresholdhave been removed.
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Figure 4: Partial generalization performanceFigure 4 plots the generalization performance on patterns which are not removed from thegeneralization set Sg, as the threshold varies. This rate is roughly uniform, whatever the thresholdbe. The �rst rate, at a threshold 0:8, is higher, because of the small number of remaining patterns(only 7 cases). If assuming that removed examples are the hard to classify patterns, then, as thethreshold increases, only very conicting patterns are removed, and remaining examples should beeasier to classify. Hence, generalization performance should be increasing with the threshold. Thisis not the case. We must conclude that for the sonar target classi�cation, in generalization, theconict measure s is not relevant for the ill-classi�cation problem. Removed examples according tothis measure, are not actually ill-classi�ed patterns.6.2 Conict measure and learningIn order to �nd a better explanation, new experiments have been performed. The conict measures was �rst proposed to ease the learning phase. The measure is used to remove conicting pairsfrom the learning set. Inuence of both the threshold and the number of cases in this base hasbeen studied. Therefore, all the example bases have to be rede�ned. St [ Sg is used to build threenested training sets containing 52, 104 and 156 examples, and a common generalization set with8



52 patterns. The following procedure is then applied to each of the training sets: given a thresholdvalue �, input/output pairs i and j for which s(i; j)> � are removed from the learning base. Thelearning algorithm is applied with the remaining examples. We call \original training set" the setbefore the removing procedure is applied, and \learning base", the group of remaining examplesafter the deletion (that is, examples which are e�ectively learned). Results are displayed below.On each �gure, three curves are given, according to the size of the original training set (52, 104and 156 cases).
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Figure 5: Percentage of remaining examplesFigure 5 plots the amount of the original training set used in the learning procedure (i.e. theratio #(learning base)/#(original training set)). The three curves have the same shape. But thethreshold for which 100% of the set is kept for training, slightly increases with the size of the originaltraining set. Thus, the degree of conict in the training set remains nearly the same, whatever thesize of the original training set. However, the number of conicting pairs logically increases withthe size of the original set. The three training bases can be considered as equally representative ofthe whole database including 208 examples.
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Figure 6: Classi�cation on the original training setFigure 6 shows the rate of well classi�ed examples on each original training set. Depending on9



the threshold value, some examples are included in the learning base, some are excluded since theyare conicting. As in the �rst �gure, the three curves have the same shape, and are nearly identical.This is a consequence of the previous observation. The rate of remaining examples depends on thethreshold value, more than on the original set size. And the rate of well learned examples is alsomainly dependent on the threshold value. Thus, the rate of success on the original training set isnearly the same, whatever the original set size be.
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Base 156Figure 7: Generalization rateThe main di�erence between the three bases is given in �gure 7, which plots the generalizationrate. As it could be expected, the rate globally increases with the threshold, since a larger numberof examples has been learned. But this rate also increases with the size of the original learning base.Learning patterns are not so numerous in order that the learning base is redundant. Therefore, thegreater the learning base, the better the generalization performance, in the limit of the availabledatabase for this application.In conclusion, the conict measure s has not been proved to be a very relevant criterion. It isnot su�cient for characterizing ill-learned nor ill-classi�ed patterns.7 Measures and decision borderAnother distance criterion could be the stability de�ned with regards to the Monoplane model [13].The stability  of a pattern i measures the distance of pattern i to the separating hyperplane, withpositive sign if it is well classi�ed, negative otherwise. A small value of the stability implies thatan example is close by the separating hyperplane (see �g. 8). We may assume that, the smaller thestability of example i, the harder the correct classi�cation of i.Let us compare the conict measure and the stability. The conict measure s(i; j) is higher astwo patterns i and j are more similar, although belonging to di�erent classes.The stability of all the examples has been computed, from the hyperplane separating the wholebase, as discussed in section 4.2.Notice that, for this application, the stability is positive for everypattern, since H0 realizes a linear separation of the whole database. For the wavelet network, halfof the hard to be learned pattern have a high stability value, hence they should have been easy tolearn. However, the most di�cult examples, number 57 and 66 have actually a very small stability.This may explain why these patterns are hard to be learned for both wavelet and multi-layerednetworks. 10
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Conflict measure Stability measureFigure 8: Comparison between the two distance criteriaLet consider now the generalization set and the table of ill-classi�ed patterns for the threemodels (table 1, section 5.2). A proportion of 82% of these ill-classi�ed patterns have a stability < 0:1. It has to be compared to the whole generalization set, for which the proportion ofpatterns with a stability  < 0:1 is only 38%. The stability criterion of Monoplane is betterthan the conict measure for explaining the patterns which are ill-classi�ed, both by wavelet andmultilayered networks.The stability could be even more relevant in explaining multi-layered network misclassi�cation,because the decision borders of this model are also hyperplanes. [Experiments are in progress inthis direction.]8 ConclusionThree neural learning models have been compared on the sonar target classi�cation problem ofGorman and Sejnowski [5]. In spite of several di�erences in the characteristics of their learningalgorithms, these neural networks perform similarly on the classi�cation problem. Experimentseven prove that the examples which are hard to be learned and the patterns which are di�cult tobe well classi�ed in generalization are nearly the same, whatever the model be. We have alreadyencountered this phenomenon, in case of an industrial application of pollution prediction, and withdi�erent neural models (Kohonen topological maps and multilayer networks) [9]. We claim thathard to classify patterns depend on the database more than on the learning model.Three measures of distance have been used to help dealing with learning failure: a classicaleuclidean distance, a conict measure, and a stability measure. Neither the euclidean distancenor the conict measure have been proved to be relevant to characterize patterns which are hardto learn, or hard to classify in generalization. The stability measure is more relevant than theprevious criteria. This statement con�rms the similar behavior which has been observed for thethree models. A calculus of stability from hyperplanes computed by Monoplane in learning on thewhole database, could be used as a reference for predicting hard to classify patterns. Nevertheless,the sonar application has proved to be a linearly separable classi�cation problem, which is not thegeneral case for real-world applications. A general criterion which would allow to distinguish hardto classify patterns is still a open problem.Consequences of this work are both theoretical and practical. The theoretical aspect concernsthe need of researching a de�nition of complexity for an application or for a database, a theory likethe VC-dimension for the families of functions or networks, but with more realistic considerations.The practical consequences consist in pointing out the importance of the data collection phase for11
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