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Abstract. The N-dimensional parity problem is frequently a difficult classification task for
Neural Networks. We found an expression for the minimum number of errors nf as function
of N for this problem, performed by a perceptron. We verified this quantity experimentally for

N ¼ 1; . . . ; 15 using an optimal train perceptron. With a constructive approach we solved the
full N-dimensional parity problem using a minimal feedforward neural network with a single
hidden layer of h ¼ N units.
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1. Introduction

The Neural Networks Community has studied the N-dimensional parity problem for

a long time. In their celebrated book, Minsky and Papert [1] elegantly demonstrated

that perceptrons are unable to solve non linearly separable problems, such as the

parity of 2 inputs (or their equivalent one, the or-exclusive problem, XOR). The

capacity of a simple perceptron is limited, since it is unable to solve problems that

are linearly separable [6, 7]. The problem still becomes difficult in small dimensions:

N4 5 and it is increased exponentially in function of the number of available pat-

terns. This problem has been attacked by several methods such as Gradient Backpro-

pagation (BP) and its variations. These methods have difficulties even in small

dimensions due to the problem of the local minima in those in which the minimiza-

tion of the cost function may fall. An alternative approach is to use Incremental

Neural Networks methods that add units while learning errors exist, following a sui-

table heuristic, as we show it in Section 4.

?Also at ERMETIS and LANCI – Université du Québec (Canada). Author to whom correspondence

should be sent.

Neural Processing Letters 16: 201–210, 2002. 201
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.



The N-dimensional parity problem can be formulated as a supervised learning

problem with a learning set of P patterns with N binary inputs xi ¼ �1;

i ¼ 1; . . . ;N, and a binary output t ¼ �1:

L ¼ fðnm; tmÞ; m ¼ 1; . . . ;Pg ð1Þ

The underlying difficulty for this problem is that, in general the N-parity is difficult

to solve in high dimensionality because if the minimization of a cost function is used,

such as the one typically used in Backpropagation, it is very complicated for the gra-

dient search algorithms to escape from the multiple local minima. This problem has

become a classic benchmark for classification algorithms [1], given that it is a highly

not linearly separable problem (non LS). The classifier should learn how to discrimi-

nate against it if a given pattern belongs to the positive class, t ¼ þ1, or the negative

one, t ¼ �1. The problem is considered exhaustive learning, because all the P ¼ 2N

different patterns examples must be learned. The N-parity’s problem becomes

quickly complicated due to the neighboring states in input’s space (its Hamming

distances are dH ¼ 1Þ with opposite outputs. A solution with binary poids percep-

trons has been should in [22].

The input’s space for the N-dimensional parity and the separating hyperplanes w

are represented for values of N ¼ 2, 3, 4, in Figures 1(a), 1(b) and 2.

2. Finding the Minimum Number of Errors

Following a constructive approach, an incremental Neural Network adds hidden

units one to one, until it is capable of eliminating learning errors. In N-dimensional

parity, the problem is quite difficult for the first unit because it should find the

Figure 1. N-dimensional parity: (a) N¼ 2, (b) N¼ 3.

202 J. MANUEL TORRES-MORENO ET AL.



smaller number of learning errors in a highly intricate N-dimensional space.

However, the corresponding hyperplane is well located, so this will allow it to find

the minimum number of errors. Also, thanks to the geometric symmetry of the pro-

blem, the rest will be less and less difficult to solve for the subsequent units.

But which is the minimum number of errors for the N-dimensional parity? To find

this number theoretically, first consider Figure 1, which represents the 2-dimensional

parity. Vector w1 separates the input’s space, where it is observed that patterns m ¼

2, 3 and 4 are well classified, whereas the negative class pattern m ¼ 1 is not well

classified. w1 makes an classification error, and it is not possible for any perceptron

to make a better classification. For the 3-dimensional parity, consider a 3D input’s

space. In Figure 1(b), vector w1 classifies the patterns m ¼ f1; 2; 3; 6; 7; 8g correctly,

whereas the patterns m ¼ f4; 5g are not well classified. Then, two errors are made.

Here, it is also observed the symmetrical phenomenon of signs alternation, starting

from the position of the separated hyperplane: patterns with tm ¼ �1 ðm ¼ 5Þ; tm ¼
þ1 ðm ¼ 1; 3; 7Þ; tm ¼ �1 ðm ¼ 2; 6; 8Þ and tm ¼ �1 ðm ¼ 4Þ: A 4-dimensional space

is represented in R2, generating the hypercube shown in Figure 2. There it is possible

to separate the patterns of different classes with a hyperplane w to decrease the learn-

ing errors, as shown in the same Figure 2. A symmetrical sign’s distribution of pat-

terns in the input’s space is evident, and it allowed to suspect us a combinatorial

behavior.

This observations allow us constructed the Table I, where the class distribution of

the hypercube vertices nk has been defined for the coeficients of the binomial:

nk ¼
N
k

� �
; k ¼ 0; 1; . . . ;N ð2Þ

This table represents the Pascal’s triangle. This alternated class distribution of verti-

ces nk (pattern class t ¼ �1 or t ¼ þ1) can be separated for successive hyperplanes.

Figure 2. 4-dimensional parity problem with separating hyperplane !
w . It misclassifies five patterns.
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If N ¼ 3, we have one pattern with class �1 (vertex n0), three patterns with class þ1
(vertex n1), three with class �1 (vertex n2) and one pattern with class þ1 (vertex n3).
The separating hyperplane that minimizes the number of errors should be located

among n1 and n2, which generates 2 errors. For N ¼ 4, we have one pattern with

class �1 (vertex n0), four with class þ1 (vertex n11), six patterns with class � (vertex

n2), four with class þ1 (vertex n3) and one pattern with class þ1 (vertex n4). To mini-
mize the classification errors the separating hyperplane should now be located

between n1 and n2 or between n2 and n3. It generates 5 errors.
The final column nf in Table I represents the minimum number of errors for the N-

dimensional parity made by a perceptron with N inputs. nf is not a simple addition

because the parity of vertices must be considered. From here, a geometrical analysis

has shown that:

nf ¼
nf ðN ¼ 2pÞ ¼

Pp
i¼1

2p
2p�iþ1

� �
if N is even

nf ðN ¼ 2p þ 1Þ ¼ 2nfð2pÞ if N is odd

8<
: p ¼ 1; 2; 3; 
 
 
 ð3Þ

We introduce here the following

THEOREM. Let L ¼ fðnm; tmÞ; m ¼ 1; . . . ;Pg a exhaustive learning set of P binary

patterns xu
i with P ¼ 2N; i ¼ 1; 2; . . . ;N; t ¼ �1 for the parity problem in a N-

dimensional input’s space. Then, the minimum number of errors nf make by a optimal

separating hyperplane is given by:

nf ¼ 2N�1 �
N � 1

m

� �
ð4Þ

Proof. Let us consider the class distribution of the N-dimensional parity vertices

given for

Table I. Distribution vertices nk; k ¼ 0; 1; . . . ;N, their class t and the minimum number of errors nf for

the N ¼ 1; 2; . . . ;11-dimensional parity.

N n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 nf

2 1 2 1 1
3 1 3 3 1 2
4 1 4 6 4 1 5

5 1 5 10 10 5 1 10
6 1 6 15 20 15 6 1 22
7 1 7 21 35 35 21 7 1 44

8 1 8 28 56 70 56 28 8 1 93
9 1 9 36 84 126 126 84 36 9 1 186
10 1 10 45 120 210 252 210 120 45 10 1 386

11 1 11 55 165 330 462 462 330 165 55 11 1 772

t ¼ � þ � þ � þ � þ � þ � þ
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nk ¼
N
k

� �
ð5Þ

and let us suppose that the separating hyperplane is placed between nm and nmþ1,

guided in such a way that patterns in both nm and nmþ1 vertices are well classified.

If m is even, we have that the misclassified patterns to the left of the separating

hyperplane according to the normal vector are in the vertices n1; n3; . . . ; nm�1. If m

is odd, then the errors will be in n0; n2; . . . ; nm�1 vertices. We call Z1 first half of num-

ber of errors, and we have:

Z1 ¼

Pm2�1
k¼0

N
2kþ1

� �
if m is even

Pm�1
2

k¼0

N
2k

	 

if m is odd

8>>><
>>>:

ð6Þ

¼
Xm�1

k¼0

N � 1
k

� �
ð7Þ

Similarly, we can count the errors Z2 in the right side of the separating hyperplane:

Z2 ¼

PN�m
2

k¼2

N
mþk

� �
if N � m is even

Pn�m�1
2

k¼2

N
mþk

� �
if N � m is odd

8>>><
>>>:

ð8Þ

¼
XN

k¼mþ1

N � 1
k

� �
ð9Þ

Now Z2 is the second half of number of errors. And being given

nf ¼ Z1 þ Z2

we have:

nf ¼
Xm�1

k¼0

N � 1

k

 !
þ

XN

k¼mþ1

N � 1

k

 !

¼
XN

k¼0

N � 1

k

 !
�

N � 1

m

 ! ð10Þ

then:

nf ¼ 2N�1 �
N � 1

m

� �

And therefore, nf will be smaller when
N � 1

m

� �
is bigger. Also, when N ¼ 2p;m ¼ p;

and if N ¼ 2p þ 1 then m ¼ p or m ¼ p þ 1. &
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3. Minimerror’s Solution

We have studied the problem of the N-dimensional parity with Minimerror, a learn-

ing algorithm [2, 3] for perceptrons. This algorithm makes a gradient search of nor-

malized weights w;w 
w ¼ N, through the minimization of a parameterized cost

function,

E ¼
1

2

XP

m¼1

V
tm w 
 nm

2T
ffiffiffiffi
N

p

� �
ð11Þ

VðxÞ ¼ 1� tanhðxÞ
 ð12Þ

where nm is the input pattern ðm ¼ 1; . . . ;PÞ, and tm ¼ �1 its class. The T parameter,

called temperature (for reasons related to the cost function interpretation), defines an

effective window width on both sides of the separating hyperplane. The derivative
dVðxÞ
dx is vanishingly small outside this window. Therefore, if the minimum cost’s

(11) is searched through a gradient descent, only the patterns m at a

dm �
jw 
 nm jffiffiffiffi

N
p < 2T ð13Þ

distance will contribute significantly to learning [3]. Minimerror algorithm imple-

ments this minimization starting at high temperature. The weights are initialized with

Hebb’s rule, which is the minimum of (11) in the high temperature limit. Then, T is

slowly decreased upon the successive iterations of the gradient descent – a procedure

called deterministic annealing – so that only the patterns within the narrowing win-

dow of width 2T are effectively taken into account for calculating the correction

dw ¼ �E
@E

@w
ð14Þ

at each time step, where E is the learning rate. Thus, the search of the hyperplane
becomes more and more local as the number of iterations increases. In practical

implementations, it was found that convergence is considerably speeded-up if pat-

terns already learned are considered at a lower temperature TL than not learned

ones, TL < T. Minimerror algorithm has three free parameters: the learning rate E
of the gradient descent, the temperature ratio TL=T, and the annealing rate dT at

which temperature is decreased. At convergence, a last minimization with TL ¼ T

is performed.

Minimerror performs correctly in problems of high dimensionality, as it was

recently shown with the discovering of the classic benchmark of the sonar problem

[14]. Several efforts [15–19] have not succeeded in finding if it is linearly separable

[9, 20, 21].

Coming back to the N-dimensional parity problem, we decided to verify the

expression (4) experimentally. For this purpose we prepared exhaustive learning sets
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of the N-dimensional parity for 2 4N4 15 and P ¼ 2N. In all cases the Minimer-

ror’s solution corresponded exactly to the number of expected errors for (4).

4. Full Solution for N-dimensional Parity with Monoplan

In order to fully solve the N-dimensional parity problem, it is necessary to use a

neural network with hidden units. A constructive approach allows a growth control

of the network (number of units) in relation to difficulty of the learning set, to the

one contrary of the BP and fixed architecture that suppose one defined architecture

a priori.

In the recently introduced Monoplan algorithm [4], each hidden unit added serves

to correct learning errors made by the precedent unit. A summary of this algorithm

follows:

– Hidden layer.

A perceptron trained with Minimerror learns the learning set L. If the number of
errors is null, et ¼ 0, then L is linearly separable and the algorithm stops: the

neural network is a simple perceptron. If et > 0, this perceptron becomes the first

hidden unit, h ¼ 1. A second unit h þ 1 is added, and the classes to be learned are

modified. The patterns classes are replaced with the new classes: thþ1 ¼ þ1 for the

patterns that are well classified by the precedent unit, and thþ1 ¼ �1 for those that

are not adequately learned: tmhþ1 ¼ smht
m
h . It has been shown that each perceptron is

capable to correct at least one learning error made by the previous perceptron.

This guarantees the convergence of the algorithm [10, 11]. When the learning of

a perceptron h concludes, its weight freezes. The hidden layer is generated until

the last unit is able to learn all the outputs correctly.

– Output layer.

The output unit z is connected now to all the units of the hidden layer. This unit

learns the desired outputs tm. If internal representations are LS, z will learn them
and the algorithm stops. Otherwise, it returns to the first phase of hidden units

aggregation, but this time the outputs to learn the new hidden unit h þ 1 are:

tmhþ1 ¼ tmzm


These two phases converge, as shown by [8].

Monoplan begins to generate a parity machine: the outputs are the parity of the

internal representations, like shown in [11, 12]. However, contrarily to the Offset

algorithm that uses a second hidden layer to calculate the parity (if the output neu-

ron detects that the internal representations are not linearly separable) Monoplan

increases the dimension of the hidden layer until the internal representations are

linearly separable.

In the N-dimensional parity problem, although it is known that the exact number

of hidden units that allows to solve this problem with a network using one single

hidden layer and no feedback (feedforward) is H ¼ N, Backpropagation and other
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non-constructive algorithms [13] cannot find it. Monoplan is able to find the correct

solution, as we checked it experimentally until N4 15. Experimental results to solve

N-parity beyond N > 15 are very difficult, because the gradient algorithm search

through the minimization’s cost fall in the multiple local minimal.

4.1. DEGENERATED INTERNAL REPRESENTATIONS

It is possible that several patterns are associated to the same internal representation.

In other words, some internal representations are degenerated, since they associate

an internal representation rm to each pattern m ¼ 1; . . . ;P. In this way, several pat-

terns may be associated to a single state in the hidden layer. For example, in the

XOR problem the four patterns are associated only to different three states s (figure
1a)

?
. This is a desirable phenomenon that we will call contraction of the input’s space

[5]. Indeed, for P patterns belonging to La, only P‘ 4P will have an internal repre-

sentations rn; n ¼ 1; . . . ;P‘.

From the output perceptron’s point of view, it is enough to learn the P‘ different

internal representations and to forget those repeated, that is to say, degenerate.

Experimentally, we have found that a great number of repeated internal representa-

tions may complicate (and even to impede) the correct positioning of the separating

hyperplane at the level of the output neuron. Indeed, if an internal representation has

been very degenerated, it contributes to learning with a coefficient multiplied by its

degeneration (number of repetitions). For example, in an extreme case where there

Table II. Hidden layers weights for the 10-dimensional parity

i Bias w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1 �1.04 �1.10 0.52 1.00 1.03 �1.03 �1.07 �1.02 �1.00 �1.07 �1.00
2 1.44 �0.93 0.88 0.92 0.92 �0.96 �0.93 �0.97 �1.06 �0.93 �0.93

3 2.45 0.68 �0.69 �0.73 � 0.71 0.68 0.72 0.74 0.73 0.71 0.68
4 2.47 �0.70 0.72 0.69 0.70 �0.70 �0.71 �0.69 �0.71 �0.68 �0.69
5 2.87 �0.54 0.54 0.51 0.53 �0.52 �0.52 �0.54 �0.50 �0.54 �0.52
6 2.84 0.49 �0.50 �0.58 �0.53 0.54 0.54 0.57 0.56 0.54 0.55

7 3.03 0.39 �0.37 �0.46 �0.45 0.41 0.42 0.43 0.47 0.42 0.45
8 3.06 �0.45 0.46 0.33 0.39 �0.42 �0.43 �0.40 �0.37 �0.43 �0.39
9 3.12 0.23 �0.17 �0.62 �0.40 0.26 0.19 0.31 0.49 0.25 0.39

10 3.12 �0.49 0.63 0.17 0.22 �0.28 �0.42 �0.33 �0.22 �0.38 �0.15

Table III. Output perceptron’s weights for the 10-dimensional parity

Bias w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

1.00 1.00 �1.00 1.00 1.00 �1.00 �1.00 1.00 1.00 �1.00 �1.00

?
On figures, for the N-dimensional parity N + 1 will be had representations different.
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are only two different internal representations: s1 and s2, with a single example asso-
ciated to s1, and P � 1 examples associated to s2, s2 is very degenerated. If P is very

big, the contribution of s1 to learning will not be very significant. In this case, Mini-
merror will put the only hyperplane near s2, and it will need a great quantity of itera-
tions to put it in the appropriate place. Since two identical internal representations

are faithful, it is impossible that they give different outputs. For learning the output,

it is enough to keep only internal representations that are different. These represen-

tations constitute the non degenerate learning set:

L‘ ¼ fðrm; tnÞ; n ¼ 1; . . . ;P‘g ð15Þ

smaller than (1), which we used for output perceptron’s training of the neural net-

work. This procedure has the additional advantage of robust learning. We show

in the Tables II and III the robust 10-parity full solution.

5. Conclusion

We presented the deduction of an expression in order to fully characterize the mini-

mum number of errors (nf) using a perceptron for solving the N-dimensional parity

problem. We have made verifications experimentally using Minimerror. This efficient

algorithm allows to find the more stable separating hyperplane, and to minimize

errors in non linearly separable learning sets through an annealing deterministic,

as well as a gradient descent of a parametrized cost function. A constructive heuristic

solution with Monoplan fully solves the N-dimensional parity problem by finding

the solution with the minimal feedforward neural network, with h ¼ N hidden units.

Results until N4 15 for the minimum number of errors nf detection with Minimer-

ror, and N4 10 for the full Parity problem with Monoplan were presented in this

paper. This couple of learning and incremental heuristic algorithms constitute a

powerful tool for learning using Neural Networks.
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