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Abstract. This paper investigates the problem of automatic chemical
Term Recognition (TR) and proposes to tackle the problem by fusing
Symbolic and statistical techniques. Unlike other solutions described in
the literature, which only use complex and costly human made ruled-
based matching algorithms, we show that the combination of a seven
rules matching algorithm and a näıve Bayes classifier achieves high per-
formances. Through experiments performed on different kind of available
Organic Chemistry texts, we show that our hybrid approach is also con-
sistent across different data sets.
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1 Introduction

Over one million new chemical compounds are discovered and published an-
nually. As in many scientific domains, the Organic Chemistry (OC) data are
not published coherently but scattered through thousands of different journal
articles. Identifiying and extracting chemical compounds is a critical task for
chemical information retrieval. Information extraction technology arose in re-
sponse to the need for efficient processing of documents in specialized domains.
Classical Natural Language Processing (NLP) tools such as parsers, taggers or
chunkers achieve very poor on OC documents. This is due to the specificity of
the domain, a very wide vocabulary, long sentences containing a high quantity
of ”hapax legomen”1. Scientists, especially chemists, want to be able to search
for articles related to particular chemical compounds. Nowadays, search engines
mainly depend on the “classical” title, author(s) and keywords scheme search-
ing. Extracting chemicals from texts and using them to classify, organize and
accelerate the information access fit to a wide range of possible applications.
1 Terms which only appears once in a text.



Chemical compounds are, in articles, identified by verbal depictions (i.e. name,
identifiers, formulae) but also pictorial depictions (chemical structure represen-
tations). From the analysis of several articles we have found that most chemical
compounds can be automatically extracted by examining chemical texts and
verifying the presence of specific patterns. In this work, we propose an hybrid
approach combining pattern matching and probabilistic classification. This pa-
per is organized as follows. Section 2 overviews the related work, section 3 defines
what we consider as a chemical compound. The two approaches and their combi-
nation are described in section 4. Experimental settings are presented in section
5 followed by the results while the section 7 concludes this paper.

2 Related Work

Nowadays, the majority of information extraction approaches in the life sciences
have focused on molecular biology and genomics information so far [2]. Only a
very limited number of named entity recognition approaches are described in the
literature for the recognition of chemical compounds. A rule-based method was
introduced by [4]. This approach was tested only on a very small benchmark
set (158 chemical terms to be identified, f -measure between 0.7619 and 0.8169,
see section 5.3 for details on performance measures). Other systems used simple
dictionary matching without any evaluation of the performance [9]. Chemical
Formulae extraction using Support Vector Machines (SVM) classification [10]
and reconstruction of molecular structure by analyzing chemical terminology [6]
have also been tried. These approaches tackle the issue of a different problem.
As far as we know, there are no current published works on the adaptation of
such statistical text mining techniques to process organic chemical papers.

3 What is a Chemical Compound?

One of the most difficult part is to define what is a chemical compound and what
it is not. We have to cope with a large variety of syntactical and semantically
different compound description. The International Union of Pure and Applied
Chemistry (IUPAC)2 is mostly well-known as the recognized authority in devel-
oping standards for the naming of the chemical elements and their compounds,
through its Interdivisional Committee on Terminology, Nomenclature and Sym-
bols (ICTNS). The IUPAC nomenclature is a useful resource for naming chemical
compounds and for describing the science of chemistry in general. Chemicals can
be described in literature by trivial names (e.g. brand or trade names), by reg-
istry numbers (e.g. database identifiers), by systematic naming schemes (e.g.
nomenclature such as IUPAC [5] or formal descriptions like SMILES [11]) and
by chemical structure depictions. Rules for naming organic compounds are con-
tained in one publication, known as the Blue Book [7]. Compounds are named by

2 http://www.iupac.org



using a number of prefixes, suffixes and infixes that support very precise infor-
mation about them (i.e. type and position of functional groups, priority, etc...).
For example, the compound 2-methylpropane is composed by the root names
prop- and meth- corresponding to the number of carbons in the main chain and
the attached chain respectively. The main chain is a propane chain and a methyl
group is bonded (attached) to the middle (2) carbon, these specifications give the
systematic name: 2-methylpropane. In articles, 2-methylpropane is commonly
called as isobutane but can also be (CH3)2CHCH3. To illustrate the large variety
of synonyms, the chemical 2-methylpropane has officially 12 synonyms (in which
Trimethylmethane; 1,1-Dimethylethane; iso-C4H10; i-Butane; Isobutane
mixtures; tert-Butane; Methylpropane; 2-methyl-isobutane Propane) but
the number of variants can be as high as several hundred. All these variants
correspond to the same compound and have to be identified. This example gives
a flavour of the tremendous difficulty of the task.

4 An Hybrid Approach

In this section, we describe two different approaches we used for chemical names
identification and we explain why we choose to combine them.

4.1 Pattern Matching

The first approach consists in manually writing a small pool of patterns based on
the Blue Book nomenclature. The system skims through the document verbatim
and tries to capture the chemical compounds. The presence of specific prefixes,
suffixes, infixes, numbers and special characters (such as brackets or Greek let-
ters) in a term allows our system to identify facile terms (e.g. high probability to
be a chemical name). We consider a term T as a token separated by two spaces.
The score Spm of a term T to be a chemical compound is calculated as:

Spm(T ) =
N∑

j=0

Matchj(T )

Matchj(T ) =
{

ωj if the pattern j match the term T
0 else

N is the total number of rules/patterns,
∑

j ωj = 1 and ωj ∈ [0, 1]. Assuming
a uniform weights distribution (i.e. weights ωj are equally spread according to
the number of rules), a term is considered to be a chemical compound if at least
one rule is matching (i.e. if Spm(T ) ≥ 0). The higher is Spm(T ), the higher is
the number of patterns matching with the term T and as a result the higher is
the likelihood to be a chemical compound. The seven rules given below compose
the pool of patterns implemented in our system.

1. Presence of a morpheme indicating the number of carbon atoms (40 patterns):
(*meth*, *eth*, *propa*, *buta* . . . )



2. Presence of a specific suffix (58 patterns):
(*ane, *yne, *thiol, *oate, *amine . . . )

3. Presence of a numbering prefix/infix (locant):
(1,3-*, 2,3,5-*, *-2-*, [4,5-b]* . . . )

4. Presence of a multiplying prefix (10 patterns):
(tri*, tetra*, penta* . . . )

5. Presence of a ambiguity prefix (3 patterns):
(iso*, sec*, tert* . . . )

6. Presence of a specific infix (46 patterns):
(*chlor*, *phosphor*, *amin* . . . )

7. Presence of specific Caps and Numbers patterns:
(AcOH, NH4OAc, DMFDMA . . . )

4.2 The Bayes Classifier

The second approach uses a probabilistic classifier based on applying Bayes’ theorem
with strong independence assumptions [8]. The instances to be classified are described
by attribute vectors −→a = (a1, a2..., an). The overlaping n-grams of letters (n = 3) are
used to train the classifier. For example, the term 2-methylpentane will be splitted
in thirteen 3-grams (e.g. 2-m, -me, met, eth, thy, hyl, ylp, lpe, pen, ent, nta, tan

and ane). The use of 3-grams representing the first/last two characters of a term
(respectively **2, **2-, ne* and e** for the example above) have been experimented
but finally not retained3. The Bayes classifier assigns to an instance the most probable
–or maximum a posteriori– classification from a finite set C of classes:

Cmap ≡ argmax
c∈C

P (c|−→a ) (1)

Which after applying Bayes’ theorem can be written

Cmap = argmax
c∈C

P (c)P (−→a |c) (2)

We choose to define each attribute ai as one of the 3-grams that compose the term T.
The finite set C is composed by two classes: c and ¬c (e.g. chemical and not chemical).
We need to estimate the probability of a certain 3-gram ai = (wi−2, wi−1, wi) occurring
in a class c.

P (wi|wi−2wi−1c) (3)

The posterior probabilities could be estimated directly from the training data using
Laplace smoothing to avoid zero probabilities. With this assumption, Equation (2)
becomes the Bayes classifer.

Cmap = argmax
c∈C

P (c)
Y

i

P (wi|wi−2wi−1c) (4)

3 These 3-grams being not discriminant introduce misclassifications



4.3 Combination of the approaches

Although successful, the first approach (c.f section 4.1) is limited by the tremendous
variety of chemical names in literature. As a consequence, the overall performance is
below the Bayes classifier. The classification approach is more accurate and achieves
good results (see section 6). Since our main goal is to produce a system with a very high
precision, the choice was hence made to try a combination of the two approaches. The
basic idea implemented by the hybrid method is that of “voting” or “recommendation”.
When one term is classified as chemical compound and at the same time is matched by
at least one rule then the term is validated as chemical compound. The combination
is hoping to increase the precision to a very high score by removing misclassification
errors. The price to paid for an increase of precision will be a fall of recall, only the
intersection of the two term classes is considered.

5 Experimental Settings

The method described in the previous section has been implemented and evaluated on
a testing corpus. In the following subsections, details of the experimental settings are
described.

5.1 Classifier Training

Training the parameters requires (i) creating two vocabulary sets, e.g., a chemical coum-
pound name set Vc and a non-chemical set V¬c, (ii) estimating the n-gram probabilities
by calculating the n-gram occurrences. The chemical compound name vocabulary Vc

was created from a CAS4 database of about 10K compounds. For each chemical com-
pound a query has been sent to the online database: http://webbook.nist.gov and by
parsing web pages all differents names (synonyms) have been obtained. The resulting
Vc is composed by nearly 65K compound names. The non-chemical vocabulary V¬c was
created using the SCOWL (Spell Checker Oriented Word Lists) corpus 5. The reasons
of using the SCOWL corpus are (1) to avoid the non-chemical vocabulary to contain
any chemical compound names or errors, and (2) to easily gather a large quantity of
n-grams. The n-gram probabilities were estimated from the occurrence frequencies in-
side the vocabulary sets. Two training data sets for chemical names (called Small Voc

for 10K and Large Voc for 65K) and ten of increasing size for non-chemical words have
been experimented.

5.2 Test Data

In order to evaluate our approach across real-life data sets, we have constructed a test
data set composed by abstracts and plain articles. The test corpus is composed by

4 Chemical Abstracts Service (CAS), a division of the American Chemical Society,
assigns these identifiers to every chemical that has been described in the literature.
CAS registry numbers are unique numerical identifiers for chemical compounds,
polymers, biological sequences, mixtures and alloys.

5 http://wordlist.sourceforge.net/



12 annotated abstracts extracted from the Beilstein Journal of Organic Chemistry6

RSS feed and 8 plain articles coming from different journals (Organic Letters and
Accounts of Chemical Research7) of different years (respectively 2000-2002 and 2005-
2007), different authors and topics. The corpus has been annotated by two different
annotators and validated by a domain specialist. Corpus size is approximately 20,000
terms in which 850 chemical compounds were manually identified. For the abstracts,
there are 2,700 words in which 170 chemical compounds and for the plain articles there
are 17,300 words in which 680 chemical compounds.

5.3 Performance Measures

The following performance measures are considered relevant.

Precision. It is the proportion of retrieved and relevant chemical compounds to all
the compounds retrieved.

Recall. It is the proportion of retrieved and relevant chemical compounds, out of all
relevant compounds.

f-measure. It is the weighted harmonic mean of precision and recall. The traditional
f -measure or balanced f -score is:

f -measure =
2 · (Precision ·Recall)

(Precision + Recall)

6 Experimental Results

Figure 1 shows the results of Precision, Recall and f -measure for the expression based
pattern matching (c.f section 4.1) according to the rule used and their incremental
combination (i.e. the combination in rule 3 means using rules 1,2 and 3). The observed
results confirm the limitations of the approach. Indeed, the huge variety of different
writing schemes used for chemical compounds makes impossible to obtain a full recall.
We observe that each rule allow an increase of the f-measure, this means that all rules
are “useful” (allow to increase the classification performance). Rules 6, 2 and 1 are the
best-score rules. This is interesting because it is not the logical order according to the
number of patterns contained in each rule (58 for rule 2, 48 for rule 6 and 40 for rule
1). It indicates that the presence of a specific infix (rule 6) is more discriminant than
the presence of a morpheme indicating the number of carbon (rule 1) or the presence
of specific suffixes (rule 2).

One might expect that the performance of the classifier would improve as the size
of the training corpus increases, because a larger training corpus usually leads to a
better estimation of the n-gram probabilities. In fact, Figure 2 shows that once the
corpus size reaches 40% (5850 different 3-grams), f -measures of both Small and Large
chemical training sets (respectively Small Voc and Large Voc) remain obviously at

6 The Beilstein Journal of Organic Chemistry is an Open Access, peer-reviewed on-
line journal that will encompass all aspects of organic chemistry. The journal covers
organic chemistry in its broadest sense, including: organic synthesis, organic reac-
tions, natural products chemistry, supramolecular chemistry and chemical biology.
http://bjoc.beilstein-journals.org/home/

7 http://pubs.acs.org
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Fig. 1. Performance of the pattern matching approach in relation to the rule used. The
performance of the incremental combination is also shown (black line).

the same values. This is due to the fact that the terms containing in Large Voc have
been obtained automatically (c.f see section 5.1) and so non-chemical terms have been
introduced in the chemical training set.
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Fig. 2. Performance of the classifier vs. the size of the training corpora.

Figure 3 shows the results of Precision, Recall and f -measure of the rule-based
and classifier approaches compared to their combination. We can observe that the
combination significantly increase the precision (0.92839 against 0.72224 for the rule-
based and 0.79015 for the classifier) and what ensued logically outperforms the best
approach alone in f -measure (0.87701 against 0.79099 for the rule-based and 0.83801
for the classifier). This is a very interesting result because we can infer that approaches
are complementary and can be combined without any consequent decrease of recall.
We can extrapolate and suppose that the Entity Recognition in chemical texts may be
broken up into sub-tasks solvable by slightly different but complementary approaches.

We have performed experiments on the two different kind of available corpus, i.e.
abstracts and articles. Table 1 compares the performance of the hybrid method on the
abstracts and on the articles. Our hybrid approach is consistent across the different
data sets, the precision being in both case very high. The lack of recall in articles
can be explained by the high proportion of trivial names (e.g. brand or trade names)
that are not well recognized by our rule-based approach and also by the difference of
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Fig. 3. Performance of the rule-based and classifier approaches compared to their com-
bination.

chemicals proportion in data sets (6.29% for abstracts and 3.93% for articles). An a
priori adaptation of the Bayes classifier’s training corpora by tuning the ratio between
the probabilities of the two vocabulary sets (P (c) and P (¬c)) has shown to increase
the scores, this technique will be developed in further works.

Precision Recall f-measure

Abstracts 0.88333 0.93529 0.90857
Articles 0.93402 0.82221 0.87306

Table 1. Performance score of the hybrid method on the two kinds of corpus, i.e
abstracts and articles.

We have made an a posteriori error analysis and have observed that the terms
not detected by our systems are essentially historical/common/brand names such as
alumina, salt or pipecolate. These names are very difficult to be recognized because
of their belonging in the two classes (c and ¬c) and because of their structures (not
containing discriminant patterns/structures).

7 Conclusion and Future Work

We have described an hybrid method for chemical entity recognition that combines a
simple rule-based pattern matching (seven rules) and a näıve Bayes classifier. Through
experiments performed on different kind of available Organic Chemistry texts, we have
showed that our hybrid approach is also consistent across different data sets. These
results are promising, and represent a good starting point for future research but do
show a critical point: the unstoppable growth of the number of different chemical
compounds in the literature. As a consequence, Information Extraction (IE) approaches
are more than ever required by life scientists to ensure an optimal sharing of the
information. Among the others, there are several points that would be worthy of further
investigation:



– Improve the estimation of probabilities by using smoothing techniques for unseen
n-grams [3].

– Run experiments on different kinds of non-chemical corpora or different n-grams
sizes and measure their impacts.

– Explore the usage of alternative combinations: combining the approaches in an-
other way.

– Fuse chemical entity recognition with a domain-specialized automatic summariza-
tion system [1] as a domain-specialized weighted metric (i.e. the number of chem-
ical compounds within a sentence is used as a parameter by the sentence scoring
algorithm).
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